Selective BCL-XL inhibition promotes apoptosis in combination with MLN8237 in medulloblastoma and pediatric glioblastoma cells

选择性 BCL-XL 抑制与 MLN8237 联合使用可促进髓母细胞瘤和儿童胶质母细胞瘤细胞凋亡

阅读:6
作者:Jane Levesley, Lynette Steele, Anke Brüning-Richardson, Adam Davison, Jia Zhou, Chunyong Ding, Sean Lawler, Susan C Short

Background

CNS tumors, including medulloblastoma and pediatric glioblastoma (pGBM) account for the majority of solid pediatric malignancies. There remains an unmet need to identify novel treatment approaches in poor prognosis and relapsed pediatric brain tumors, where therapeutic options are limited. Small-molecule B-cell lymphoma 2 (BCL-2) family inhibitors may enhance tumor cell killing when combined with conventional and targeted chemotherapeutic agents. We investigated the effect of disrupting BCL-2 and B cell lymphoma-extra large (BCL-XL) protein function using ABT-263, ABT-199 and WEHI-539 in medulloblastoma and pGBM cells following treatment with MLN8237, an Aurora kinase inhibitor under investigation as a novel agent for the treatment of malignant brain tumors.

Conclusion

Selective small-molecule inhibitors of BCL-XL may enhance the efficacy of MLN8237 and other targeted chemotherapeutic agents.

Methods

Tumor cell growth and viability were determined by MTT/WST-1 assays and flow cytometry. Effects on cell phenotype, cell cycle progression, and ploidy were determined by live cell imaging and DNA content analysis. Apoptosis was determined by annexin V/propidium iodide staining and time-lapse microscopy and confirmed by measuring caspase-3/7 activity and western blotting and by short interfering RNA (siRNA) knockdown of BCL-2 associated X protein/BCL-2 antagonist killer (BAX/BAK).

Results

ABT-263, in combination with MLN8237, reduced mitotic slippage and polyploidy and promoted the elimination of mitotically defective cells via a BAX/BAK-dependent, caspase-mediated apoptotic pathway. The BCL-XL antagonist, WEHI-539, significantly augmented tumor cell killing when used in combination with MLN8237, as well as sensitized resistant brain tumor cells to a novel BAX activator, SMBA1. In addition, siRNA-mediated knockdown of BCL-XL sensitized pGBM and medulloblastoma cells to MLN8237 and mimicked the effect of combination drug treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。