Glutamine induces remodeling of tight junctions in Caco-2 colorectal cancer cell

谷氨酰胺诱导Caco-2结肠直肠癌细胞紧密连接重塑

阅读:6
作者:Ching-Ying Huang, Ji-Kai Chen, Wei-Ting Kuo

Abstract

Malignant cells often exhibit significant metabolic alterations, including the utilization of different nutrients to meet energetic and biosynthetic demands. Recent studies have shown that glutamine can support primary colorectal tumor growth and also serve as an alternate energy source during distant metastasis under glucose-limited conditions. However, the overall effects of glutamine on cancer cell physiology are not completely understood. In this study, we investigated how glutamine impacts epithelial integrity in colorectal cancer cells under glucose deprivation. Human colorectal cancer (Caco-2) cells were grown to confluency in transwells and cultured in glucose/pyruvate-free DMEM with various glutamine concentrations (0-50 mM). Cell viability was assessed, and monolayer integrity was examined in terms of transepithelial resistance (TER) and paracellular permeability. Tight junction (TJ) component proteins were examined by immunofluorescence staining and Western blotting. A dose-dependent decrease in TER was observed in Caco-2 cells, but paracellular permeability was not affected after 24 h incubation with glutamine. At the same time, the TJ proteins, zonula occludens (ZO)-1 and Claudin-1, showed lateral undulations and punctate staining patterns accompanied by enlargement of cellular and nuclear sizes. Furthermore, decreased protein levels of ZO-1, but not claudin-1, were found in detergent-insoluble cellular fractions. Notably, the decreased TER and alterations in TJ structure were not associated with cell viability changes. Moreover, the addition of glutamate, which is produced by the first step of glutamine catabolism, had no impact on TER. Our results suggested that the enteral glutamine may play an important role in the regulation of TJ dynamics in colorectal cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。