CD22 modulation alleviates amyloid β-induced neuroinflammation

CD22 调节可减轻淀粉样蛋白 β 引起的神经炎症

阅读:5
作者:Yu Dong Mai #, Qingqing Zhang #, Cheuk Lim Fung, Shui On Leung, Chi Ho Chong

Abstract

Neuroinflammation is a crucial driver of multiple neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Yet, therapeutic targets for neurodegenerative diseases based on neuroinflammation still warrant investigation. CD22 has been implicated in neuroinflammatory diseases, namely AD. Specifically, plasma soluble CD22 (sCD22) level is upregulated in patients with AD. Direct experimental evidence for the role of CD22 in neuroinflammation is needed, as is a better understanding of its impact on microglia activation and therapeutic potential. Here we reported that sCD22 promotes neuroinflammation both in vivo and in vitro. sCD22 activated microglia via both p38 and ERK1/2 signaling pathway for the secretion of TNFα, IL-6 and CCL3. Moreover, sCD22 activated microglia via sialic acid binding domain and 2,6 linked sialic acid glycan on sCD22. The pivotal therapeutic potential of targeting CD22 was demonstrated in Amyloid β (Aβ) induced-neuroinflammation in hCD22 transgenic mice. Suciraslimab improved working memory and resolved neuroinflammation in vivo. Further, membrane CD22 inhibited Amyloid β (Aβ) induced-NFκB signaling pathway and mechanistic study delineated that suciraslimab suppressed Aβ-induced IL-1β secretion in human microglia and PBMC. Suciraslimab also suppressed IL-12 and IL-23 secretion in human PBMC. Moreover, suciraslimab reduced the surface expression of α4 integrin on B cells. Intriguingly, we discovered that CD22 interact with Aβ and suciraslimab enhanced internalization of CD22-Aβ complex in microglia. Our data highlights the importance of sCD22 in driving neuroinflammation and the dual mechanism of targeting CD22 to resolve Aβ-induced inflammation and promote Aβ phagocytosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。