Gene expression profile of human airway epithelium induced by hyperoxia in vivo

体内高氧诱导的人类气道上皮细胞基因表达谱

阅读:5
作者:Arnaud Chambellan, Paul J Cruickshank, Patrick McKenzie, Steven B Cannady, Katalin Szabo, Suzy A A Comhair, Serpil C Erzurum

Abstract

Hyperoxia leads to oxidative modification and damage of macromolecules in the respiratory tract with loss of biological functions. Given the lack of antioxidant gene induction with acute exposure to 100% oxygen, we hypothesized that clearance pathways for oxidatively modified proteins may be induced and serve in the immediate cellular response to preserve the epithelial layer. To test this, airway epithelial cells were obtained from individuals under ambient oxygen conditions and after breathing 100% oxygen for 12 h. Gene expression profiling identified induction of genes in the chaperone and proteasome-ubiquitin-conjugation pathways that together comprise an integrated cellular response to manage and degrade damaged proteins. Analyses also revealed gene expression changes associated with oxidoreductase function, cell cycle regulation, and ATP synthesis. Increased HSP70, protein ubiquitination, and intracellular ATP were validated in cells exposed to hyperoxia in vitro. Inhibition of proteasomal degradation revealed the importance of accelerated protein catabolism for energy production of cells exposed to hyperoxia. Thus, the human airway early response to hyperoxia relies predominantly upon induction of cytoprotective chaperones and the ubiquitin-proteasome-dependent protein degradation system to maintain airway homeostatic integrity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。