Brain tumor cell line authentication, an efficient alternative to capillary electrophoresis by using a microfluidics-based system

脑肿瘤细胞系认证是使用基于微流体的系统进行毛细管电泳的有效替代方法

阅读:5
作者:Qian An, Helen L Fillmore, Mikaella Vouri, Geoffrey J Pilkington

Background

The current method for cell line authentication is genotyping based on short tandem repeat (STR)-PCR involving coamplification of a panel of STR loci by multiplex PCR and downstream fragment length analysis (FLA), usually performed by capillary electrophoresis. FLA by capillary electrophoresis is time-consuming and can be expensive, as the facilities are generally not accessible for many research laboratories.

Conclusion

This novel application provides a straightforward and cost-effective alternative to STR-based cell line authentication. In addition, this application would be of great value for cell bank repositories to maintain and distribute precious cell lines.

Methods

In the present study, a microfluidic electrophoresis system, the Agilent 2100 Bioanalyzer, was used to analyze the STR-PCR fragments from 10 human genomic loci of a number of human cell lines, including 6 gliomas, 1 astrocyte, 1 primary lung cancer, 1 lung brain metastatic cancer, and 1 rhabdomyosarcoma; and this was compared with the standard method, that is, capillary electrophoresis, using the Applied Biosystems 3130xl Genetic Analyzer.

Results

The microfluidic electrophoresis method produced highly reproducible results with good sensitivity in sizing of multiple PCR fragments, and each cell line demonstrated a unique DNA profile. Furthermore, DNA fingerprinting of samples from 5 different passage numbers of the same cell line showed excellent reproducibility when FLA was performed with the Bioanalyzer, indicating that no cross-contamination had occurred during the culture period.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。