Cytoprotective activity of mitochondrial uncoupling protein-2 in lung and spleen

线粒体解偶联蛋白-2在肺和脾中的细胞保护活性

阅读:8
作者:Martin Jabůrek, Jan Ježek, Petr Ježek

Abstract

Mitochondrial uncoupling protein-2 (UCP2) mediates free fatty acid (FA)-dependent H+ translocation across the inner mitochondrial membrane (IMM), which leads to acceleration of respiration and suppression of mitochondrial superoxide formation. Redox-activated mitochondrial phospholipase A2 (mt-iPLA2γ) cleaves FAs from the IMM and has been shown to acts in synergy with UCP2. Here, we tested the mechanism of mt-iPLA2γ-dependent UCP2-mediated antioxidant protection using lipopolysaccharide (LPS)-induced pro-inflammatory and pro-oxidative responses and their acute influence on the overall oxidative stress reflected by protein carbonylation in murine lung and spleen mitochondria and tissue homogenates. We provided challenges either by blocking the mt-iPLA 2γ function by the selective inhibitor R-bromoenol lactone (R-BEL) or by removing UCP2 by genetic ablation. We found that the basal levels of protein carbonyls in lung and spleen tissues and isolated mitochondria were higher in UCP2-knockout mice relative to the wild-type (wt) controls. The administration of R-BEL increased protein carbonyl levels in wt but not in UCP2-knockout (UCP2-KO) mice. LPS further increased the protein carbonyl levels in UCP2-KO mice, which correlated with protein carbonyl levels determined in wt mice treated with R-BEL. These results are consistent with the UCP2/mt-iPLA 2γ antioxidant mechanisms in these tissues and support the existence of UCP2-synergic mt-iPLA 2γ-dependent cytoprotective mechanism in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。