Aim
To study a possible causative role of NOX4 in the death of alveolar cells, we have generated NOX4-deficient mice.
Conclusion
ROS generation by NOX4 is a key player in epithelial cell death leading to pulmonary fibrosis.
Results
Three weeks after administration of bleomycin, wild-type (WT) mice developed massive fibrosis, whereas NOX4-deficient mice displayed almost normal lung histology, and only little Smad2 phosphorylation and accumulation of myofibroblasts. However, the protective effects of NOX4 deficiency preceded the fibrotic stage. Indeed, at day 7 after bleomycin, lungs of WT mice showed massive increase in epithelial cell apoptosis and inflammation. In NOX4-deficient mice, no increase in apoptosis was observed, whereas inflammation was comparable to WT. In vitro, NOX4-deficient primary alveolar epithelial cells exposed to transforming growth factor-β(1) did not generate ROS and were protected from apoptosis. Acute treatment with the NOX inhibitors also blunted transforming growth factor-β(1)-induced apoptosis.
