Structural insights into the low pH adaptation of a unique carboxylesterase from Ferroplasma: altering the pH optima of two carboxylesterases

对 Ferroplasma 独特羧酸酯酶的低 pH 适应性的结构洞察:改变两种羧酸酯酶的最适 pH 值

阅读:4
作者:Kazuhiro Ohara, Hideaki Unno, Yasuhiro Oshima, Miho Hosoya, Naoto Fujino, Kazutake Hirooka, Seiji Takahashi, Satoshi Yamashita, Masami Kusunoki, Toru Nakayama

Abstract

To investigate the mechanism for low pH adaptation by a carboxylesterase, structural and biochemical analyses of EstFa_R (a recombinant, slightly acidophilic carboxylesterase from Ferroplasma acidiphilum) and SshEstI (an alkaliphilic carboxylesterase from Sulfolobus shibatae DSM5389) were performed. Although a previous proteomics study by another group showed that the enzyme purified from F. acidiphilum contained an iron atom, EstFa_R did not bind to iron as analyzed by inductively coupled plasma MS and isothermal titration calorimetry. The crystal structures of EstFa_R and SshEstI were determined at 1.6- and 1.5-Å resolutions, respectively. EstFa_R had a catalytic triad with an extended hydrogen bond network that was not observed in SshEstI. Quadruple mutants of both proteins were created to remove or introduce the extended hydrogen bond network. The mutation on EstFa_R enhanced its catalytic efficiency and gave it an alkaline pH optimum, whereas the mutation on SshEstI resulted in opposite effects (i.e. a decrease in the catalytic efficiency and a downward shift in the optimum pH). Our experimental results suggest that the low pH optimum of EstFa_R activity was a result of the unique extended hydrogen bond network in the catalytic triad and the highly negatively charged surface around the active site. The change in the pH optimum of EstFa_R happened simultaneously with a change in the catalytic efficiency, suggesting that the local flexibility of the active site in EstFa_R could be modified by quadruple mutation. These observations may provide a novel strategy to elucidate the low pH adaptation of serine hydrolases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。