Conclusions
This dual MN/NP-mediated approach offers potential for both the dermal and transdermal delivery of therapeutic agents with poor passive diffusion characteristics.
Methods
Gantrez MNs were fabricated using laser-engineered silicone micro-mould templates. PLGA NPs were prepared using a modified emulsion-diffusion-evaporation method and characterised in vitro. Permeation of encapsulated Rh B through MN-treated full thickness porcine skin was performed using Franz diffusion cells with appropriate controls. Key findings: In-vitro skin permeation of the nanoencapsulated Rh B (6.19 ± 0.77 µg/cm²/h) was significantly higher (P < 0.05) compared with the free solution (1.66 ± 0.53 µg/cm²/h). Mechanistic insights were supportive of preferential and rapid deposition of NPs in the MN-created microconduits, resulting in accelerated dye permeation. Variables such as MN array configuration and application mode were shown to affect transdermal delivery of the nanoencapsulated dye. Conclusions: This dual MN/NP-mediated approach offers potential for both the dermal and transdermal delivery of therapeutic agents with poor passive diffusion characteristics.
