Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells

哺乳动物细胞中组蛋白 H3 赖氨酸 23 丙酰化的鉴定和表征

阅读:5
作者:Bo Liu, Yihui Lin, Agus Darwanto, Xuehui Song, Guoliang Xu, Kangling Zhang

Abstract

Propionylation has been identified recently as a new type of protein post-translational modification. Bacterial propionyl-CoA synthetase and human histone H4 are propionylated at specific lysine residues that have been known previously to be acetylated. However, other proteins subject to this modification remain to be identified, and the modifying enzymes involved need to be characterized. In this work, we report the discovery of histone H3 propionylation in mammalian cells. Propionylation at H3 lysine Lys(23) was detected in the leukemia cell line U937 by mass spectrometry and Western analysis using a specific antibody. In this cell line, the propionylated form of Lys(23) accounted for 7%, a level at least 6-fold higher than in other leukemia cell lines (HL-60 and THP-1) or non-leukemia cell lines (HeLa and IMR-90). The propionylation level in U937 cells decreased remarkably during monocytic differentiation, indicating that this modification is dynamically regulated. Moreover, in vitro assays demonstrated that histone acetyltransferase p300 can catalyze H3 Lys(23) propionylation, whereas histone deacetylase Sir2 can remove this modification in the presence of NAD(+). These results suggest that histone propionylation might be generated by the same set of enzymes as for histone acetylation and that selection of donor molecules (propionyl-CoA versus acetyl-CoA) may determine the difference of modifications. Because like acetyl-CoA, propionyl-CoA is an important intermediate in biosynthesis and energy production, histone H3 Lys(23) propionylation may provide a novel epigenetic regulatory mark for cell metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。