Modulation of Biomaterial-Associated Fibrosis by Means of Combined Physicochemical Material Properties

利用材料物理化学特性调节生物材料相关纤维化

阅读:4
作者:Lisa E Tromp, Torben A B van der Boon, Roderick H J de Hilster, Ruud Bank, Patrick van Rijn

Abstract

Biomaterial-associated fibrosis remains a significant challenge in medical implants. To optimize implant design, understanding the interplay between biomaterials and host cells during the foreign body response (FBR) is crucial. Material properties are known to influence cellular behavior and can be used to manipulate cell responses, but predicting the right combination for the desired outcomes is challenging. This study explores how combined physicochemical material properties impact early myofibroblast differentiation using the Biomaterial Advanced Cell Screening (BiomACS) technology, which assesses hundreds of combinations of surface topography, stiffness, and wettability in a single experiment. Normal human dermal fibroblasts (NHDFs) are screened for cell density, area, and myofibroblast markers α-smooth muscle actin (α-SMA) and Collagen type I (COL1) after 24 h and 7 days of culture, with or without transforming growth factor-beta (TGF-β). Results demonstrated that material properties influence fibroblast behavior after 7 days with TGF-β stimulation, with wettability emerging as the predominant factor, followed by stiffness. The study identified regions with increased cell adhesion while minimizing myofibroblast differentiation, offering the potential for implant surface optimization to prevent fibrosis. This research provides a powerful tool for cell-material studies and represents a critical step toward enhancing implant properties and reducing complications, ultimately improving patient outcomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。