Modeling combination therapies in patient cohorts and cell cultures using correlated drug action

使用相关药物作用对患者队列和细胞培养中的联合疗法进行建模

阅读:8
作者:Adith S Arun, Sung-Cheol Kim, Mehmet Eren Ahsen, Gustavo Stolovitzky

Abstract

Characterizing the effect of combination therapies is vital for treating diseases like cancer. We introduce correlated drug action (CDA), a baseline model for the study of drug combinations in both cell cultures and patient populations, which assumes that the efficacy of drugs in a combination may be correlated. We apply temporal CDA (tCDA) to clinical trial data, and demonstrate the utility of this approach in identifying possible synergistic combinations and others that can be explained in terms of monotherapies. Using MCF7 cell line data, we assess combinations with dose CDA (dCDA), a model that generalizes other proposed models (e.g., Bliss response-additivity, the dose equivalence principle), and introduce Excess over CDA (EOCDA), a new metric for identifying possible synergistic combinations in cell culture.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。