Aim of the study
This study aimed to evaluate the protective anti-inflammatory potential and better understand the underlying mechanism of action of APEE50 in a clinically-relevant mouse asthma model. Thereafter, develop the ethanolic extract of AP as a supplement for asthma prophylaxis. Materials and method: APEE50 was prepared and standardized for AGP, NAG, and DDAG using a high-performance liquid chromatography system. Asthma was induced according to a 14-day house dust mite (HDM) induction protocol. The prophylactic potential of APEE50 (50 mg/kg - 200 mg/kg) was determined by assessing cardinal asthma features, which included BALF leukocyte and differential cell count, BALF cytokine assay, histology, gene expression, and airway hyperreactivity study.
Conclusion
Prophylactic administration of APEE50 prevented the progression of HDM-induced asthmatic responses by down-regulating Th2 cytokine gene expression and oxidative stress level.
Results
APEE50 significantly inhibited HDM-induced airway eosinophilia and neutrophilia. In addition to decreased levels of IL-4, IL-5, IL-13, and eotaxin in bronchoalveolar fluid, APEE50 abrogated HDM-induced airway mucus over-secretion and airway hyper-responsiveness. Administration of APEE50 downregulated HDM-induced upregulation of the oxidative stress enzyme Duox1 (dual oxidase 1) and marginally induced Nfe2l2 (nuclear factor erythroid 2-related factor 2) gene expressions. Similarly, Th2-related (Serpinb2, Clca3a1, Il4 and Il13) and Muc5ac gene expression were significantly downregulated.
