Genetic Control of Fatty Acid β-Oxidation in Chronic Obstructive Pulmonary Disease

慢性阻塞性肺病中脂肪酸β-氧化的基因控制

阅读:9
作者:Zhiqiang Jiang, Nelson H Knudsen, Gang Wang, Weiliang Qiu, Zun Zar Chi Naing, Yan Bai, Xingbin Ai, Chih-Hao Lee, Xiaobo Zhou

Abstract

Bioenergetics homeostasis is important for cells to sustain normal functions and defend against injury. The genetic controls of bioenergetics homeostasis, especially lipid metabolism, remain poorly understood in chronic obstructive pulmonary disease (COPD), the third leading cause of death in the world. Additionally, the biological function of most of the susceptibility genes identified from genome-wide association studies (GWASs) in COPD remains unclear. Here, we aimed to address (1) how fatty acid oxidation (FAO), specifically β-oxidation, a key lipid metabolism pathway that provides energy to cells, contributes to cigarette smoke (CS)-induced COPD; and (2) whether-and if so, how-FAM13A (family with sequence similarity 13 member A), a well-replicated COPD GWAS gene, modulates the FAO pathway. We demonstrated that CS induced expression of carnitine palmitoyltransferase 1A (CPT1A), a key mitochondrial enzyme for the FAO pathway, thereby enhancing FAO. Pharmacological inhibition of FAO by etomoxir blunted CS-induced reactive oxygen species accumulation and cell death in lung epithelial cells. FAM13A promoted FAO, possibly by interacting with and activating sirutin 1, and increasing expression of CPT1A. Furthermore, CS-induced cell death was reduced in lungs from Fam13a-/- mice. Our results suggest that FAM13A, the COPD GWAS gene, shapes the cellular metabolic response to CS exposure by promoting the FAO pathway, which may contribute to COPD development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。