CYP51-mediated cholesterol biosynthesis is required for the proliferation of CD4+ T cells in Sjogren's syndrome

CYP51 介导的胆固醇生物合成是干燥综合征中 CD4+ T 细胞增殖所必需的

阅读:6
作者:Junhao Yin #, Jiayao Fu #, Yanxiong Shao, Jiabao Xu, Hui Li, Changyu Chen, Yijie Zhao, Zhanglong Zheng, Chuangqi Yu, Lingyan Zheng, Baoli Wang1

Abstract

CYtochrome P450, family 51 (CYP51) is an important enzyme for de novo cholesterol synthesis in mammalian cells. In the present study, we found that the expression of CYP51 positively correlated with CD4+ T cell activation both in vivo and in vitro. The addition of ketoconazole, a pharmacological inhibitor of CYP51, prevented the proliferation and activation of anti-CD3/CD28-expanded mouse CD4+ T cells in a dose-dependent fashion. Liquid chromatography-tandem mass spectrometry indicated an increase in levels of lanosterol in T cells treated with ketoconazole during activation. Ketoconazole-induced blockade of the cholesterol synthesis pathway also caused Sterol regulatory element binding protein 2 (SREBP2) activation in CD4+ T cells. Additionally, ketoconazole treatment elicited an integrated stress response in T cells that up-regulated activating transcription factor 4 (ATF4) and DNA-damage inducible transcript 3 (DDIT3/CHOP) at the translational level. Furthermore, treatment with ketoconazole significantly decreased the amount of CD4+ T cells infiltrating lesions in the submandibular glands of NOD/Ltj mice. In summary, our results suggest that CYP51 plays an essential role in the proliferation and survival of CD4+ T cells, which makes ketoconazole an inhibitor of CD4+ T cell proliferation and of the SS-like autoimmune response through regulating the biosynthesis of cholesterol and inducing the integrated stress response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。