The Potential Role of SNRPD1 Stabilized by IGF2BP2 in the Progression of Triple-Negative Breast Cancer

IGF2BP2 稳定的 SNRPD1 在三阴性乳腺癌进展中的潜在作用

阅读:7
作者:Siqi Liu, Xin Sun, Na Liu, Fangcai Lin

Background

Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), an RNA-binding protein with N6-methyladenosine (m6A) reader function, is associated with the poor prognosis of various tumors, including triple-negative breast cancer (TNBC). Small nuclear ribonucleoprotein D1 polypeptide (SNRPD1), a spliceosome member, exerts diagnostic and therapeutic functions in breast cancer by regulating the cell cycle and is a potential therapeutic target. However, the interaction between IGF2BP2 and SNRPD1 in the progression of TNBC remain unclear.

Conclusion

IGF2BP2 and SNRPD1 were significantly highly expressed in TNBC cells. IGF2BP2 might enhance the stability and protein expression of SNRPD1 through m6A-dependent mechanisms, potentially contributing to the progression of TNBC.

Methods

Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to detect the expression levels of SNRPD1 and IGF2BP2 in human normal breast cells (MCF10A) and TNBC cells (MDA-MB-231). MDA-MB-231 cells were transfected with SNRPD1 interference or overexpression vectors, or co-transfected with SNRPD1 interference and IGF2BP2 overexpression vectors simultaneously. Cell viability, apoptosis, and invasion were assessed using MTT, flow cytometry, and Transwell assays. RNA stability, m6A levels, and the interaction between SNRPD1 and IGF2BP2 were evaluated using qRT-PCR, methylated RNA immunoprecipitation, and RIP assays.

Objective

This study aimed to investigate the interaction between IGF2BP2 and SNRPD1 in TNBC and elucidate the underlying mechanisms.

Results

SNRPD1 was significantly up-regulated in TNBC cells, promoting cell viability and invasion while inhibiting apoptosis. IGF2BP2 was also up-regulated in TNBC cells and enhanced SNRPD1 mRNA stability via m6A modification. Furthermore, IGF2BP2 overexpression reversed the anti-tumor effect of SNRPD1 knockdown.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。