A complementary palette of NanoCluster Beacons

NanoCluster Beacons 的补充调色板

阅读:4
作者:Judy M Obliosca, Mark C Babin, Cong Liu, Yen-Liang Liu, Yu-An Chen, Robert A Batson, Mainak Ganguly, Jeffrey T Petty, Hsin-Chih Yeh

Abstract

NanoCluster Beacons (NCBs), which use few-atom DNA-templated silver clusters as reporters, are a type of activatable molecular probes that are low-cost and easy to prepare. While NCBs provide a high fluorescence enhancement ratio upon activation, their activation colors are currently limited. Here we report a simple method to design NCBs with complementary emission colors, creating a set of multicolor probes for homogeneous, separation-free detection. By systematically altering the position and the number of cytosines in the cluster-nucleation sequence, we have tuned the activation colors of NCBs to green (C8-8, 460 nm/555 nm); yellow (C5-5, 525 nm/585 nm); red (C3-4, 580 nm/635 nm); and near-infrared (C3-3, 645 nm/695 nm). At the same NCB concentration, the activated yellow NCB (C5-5) was found to be 1.3 times brighter than the traditional red NCB (C3-4). Three of the four colors (green, yellow, and red) were relatively spectrally pure. We also found that subtle changes in the linker sequence (down to the single-nucleotide level) could significantly alter the emission spectrum pattern of an NCB. When the length of linker sequences was increased, the emission peaks were found to migrate in a periodic fashion, suggesting short-range interactions between silver clusters and nucleobases. Size exclusion chromatography results indicated that the activated NCBs are more compact than their native duplex forms. Our findings demonstrate the unique photophysical properties and environmental sensitivities of few-atom DNA-templated silver clusters, which are not seen before in common organic dyes or luminescent crystals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。