Generation of DNA oligomers with similar chemical kinetics via in-silico optimization

通过计算机优化生成具有相似化学动力学的 DNA 寡聚体

阅读:7
作者:Michael Tobiason, Bernard Yurke, William L Hughes

Abstract

Networks of interacting DNA oligomers are useful for applications such as biomarker detection, targeted drug delivery, information storage, and photonic information processing. However, differences in the chemical kinetics of hybridization reactions, referred to as kinetic dispersion, can be problematic for some applications. Here, it is found that limiting unnecessary stretches of Watson-Crick base pairing, referred to as unnecessary duplexes, can yield exceptionally low kinetic dispersions. Hybridization kinetics can be affected by unnecessary intra-oligomer duplexes containing only 2 base-pairs, and such duplexes explain up to 94% of previously reported kinetic dispersion. As a general design rule, it is recommended that unnecessary intra-oligomer duplexes larger than 2 base-pairs and unnecessary inter-oligomer duplexes larger than 7 base-pairs be avoided. Unnecessary duplexes typically scale exponentially with network size, and nearly all networks contain unnecessary duplexes substantial enough to affect hybridization kinetics. A new method for generating networks which utilizes in-silico optimization to mitigate unnecessary duplexes is proposed and demonstrated to reduce in-vitro kinetic dispersions as much as 96%. The limitations of the new design rule and generation method are evaluated in-silico by creating new oligomers for several designs, including three previously programmed reactions and one previously engineered structure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。