Lignin-derived carbon nanosheets boost electrochemical reductive amination of pyruvate to alanine

木质素衍生的碳纳米片促进丙酮酸电化学还原胺化为丙氨酸

阅读:6
作者:Shunhan Jia, Xingxing Tan, Limin Wu, Ziwei Zhao, Xinning Song, Jiaqi Feng, Libing Zhang, Xiaodong Ma, Zhanrong Zhang, Xiaofu Sun, Buxing Han

Abstract

Efficient and sustainable amino acid synthesis is essential for industrial applications. Electrocatalytic reductive amination has emerged as a promising method, but challenges such as undesired side reactions and low efficiency persist. Herein, we demonstrated a lignin-derived catalyst for alanine synthesis. Carbon nanosheets (CNSs) were synthesized from lignin via a template-assisted method and doped with nitrogen and sulfur to boost reductive amination and suppress side reactions. The resulting N,S-co-doped carbon nanosheets (NS-CNSs) exhibited outstanding electrochemical performance. It achieved a maximum alanine Faradaic efficiency of 79.5%, and a yield exceeding 1,199 μmol h-1 cm-2 on NS-CNS, with a selectivity above 99.9%. NS-CNS showed excellent durability during long-term electrolysis. Kinetic studies including control experiments and theoretical calculations provided further insights into the reaction pathway. Moreover, NS-CNS catalysts demonstrated potential in upgrading real-world polylactic acid plastic waste, yielding value-added alanine with a selectivity over 75%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。