Highly Efficient CYP167A1 (EpoK) dependent Epothilone B Formation and Production of 7-Ketone Epothilone D as a New Epothilone Derivative

高效 CYP167A1 (EpoK) 依赖的环氧化物 B 的形成和 7-酮环氧化物 D 作为新型环氧化物衍生物的生成

阅读:6
作者:Fredy Kern, Tobias K F Dier, Yogan Khatri, Kerstin M Ewen, Jean-Pierre Jacquot, Dietrich A Volmer, Rita Bernhardt

Abstract

Since their discovery in the soil bacterium Sorangium cellulosum, epothilones have emerged as a valuable substance class with promising anti-tumor activity. Because of their benefits in the treatment of cancer and neurodegenerative diseases, epothilones are targets for drug design and pharmaceutical research. The final step of their biosynthesis - a cytochrome P450 mediated epoxidation of epothilone C/D to A/B by CYP167A1 (EpoK) - needs significant improvement, in particular regarding the efficiency of its redox partners. Therefore, we have investigated the ability of various hetero- and homologous redox partners to transfer electrons to EpoK. Hereby, a new hybrid system was established with conversion rates eleven times higher and Vmax of more than seven orders of magnitudes higher as compared with the previously described spinach redox chain. This hybrid system is the most efficient redox chain for EpoK described to date. Furthermore, P450s from So ce56 were identified which are able to convert epothilone D to 14-OH, 21-OH, 26-OH epothilone D and 7-ketone epothilone D. The latter one represents a novel epothilone derivative and is a suitable candidate for pharmacological tests. The results revealed myxobacterial P450s from S. cellulosum So ce56 as promising candidates for protein engineering for biotechnological production of epothilone derivatives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。