Matrix protein microarrays for spatially and compositionally controlled microspot thrombosis under laminar flow

基质蛋白微阵列用于层流下空间和成分控制微点血栓形成

阅读:5
作者:Uzoma M Okorie, Scott L Diamond

Abstract

Microarraying allows the spatial and compositional control of surfaces, typically for the purpose of binding reactions. Collagen and/or von Willebrand Factor (vWF) in 5% glycerol was contact printed onto glass slides to create defined microspots (176-microm diameter) of adsorbed protein without sample dehydration. The arrays were mounted on flow chambers allowing video microscopy during perfusion (wall shear rate of 100-500 s(-1)) of recalcified corn trypsin inhibitor-treated whole blood or platelet rich plasma and subsequent array scanning via anti-GPIbalpha and anti-fibrin(ogen) immunofluorescence. To mimic the subendothelial matrix, vWF was microarrayed over sonicated type I collagen microspots. For whole blood perfusion (500 s(-1), 10 min) over collagen, vWF, and collagen/vWF microspots, the amount of platelet deposition on the collagen/vWF spots was approximately 2 times greater in comparison to the collagen spots and approximately 18 times greater in comparison to the vWF spots. The amount of fibrin(ogen) deposition on the collagen/vWF spots was approximately 2 times greater in comparison to the collagen spots and approximately 4 times greater in comparison to the vWF spots. This protocol allowed for highly uniform (CV = 18%) and precisely located thrombus formation at a density of >or=400 spots/cm(2). Microarrays are ideal for the combinatorial assembly of adhesive and procoagulant proteins to study thrombosis as well as to study axial and lateral transport effects between discrete microspots of distinct composition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。