ICan: an optimized ion-current-based quantification procedure with enhanced quantitative accuracy and sensitivity in biomarker discovery

ICan:一种优化的基于离子电流的定量程序,可提高生物标志物发现的定量准确性和灵敏度

阅读:10
作者:Chengjian Tu, Quanhu Sheng, Jun Li, Xiaomeng Shen, Ming Zhang, Yu Shyr, Jun Qu

Abstract

The rapidly expanding availability of high-resolution mass spectrometry has substantially enhanced the ion-current-based relative quantification techniques. Despite the increasing interest in ion-current-based methods, quantitative sensitivity, accuracy, and false discovery rate remain the major concerns; consequently, comprehensive evaluation and development in these regards are urgently needed. Here we describe an integrated, new procedure for data normalization and protein ratio estimation, termed ICan, for improved ion-current-based analysis of data generated by high-resolution mass spectrometry (MS). ICan achieved significantly better accuracy and precision, and lower false-positive rate for discovering altered proteins, over current popular pipelines. A spiked-in experiment was used to evaluate the performance of ICan to detect small changes. In this study E. coli extracts were spiked with moderate-abundance proteins from human plasma (MAP, enriched by IgY14-SuperMix procedure) at two different levels to set a small change of 1.5-fold. Forty-five (92%, with an average ratio of 1.71 ± 0.13) of 49 identified MAP protein (i.e., the true positives) and none of the reference proteins (1.0-fold) were determined as significantly altered proteins, with cutoff thresholds of ≥ 1.3-fold change and p ≤ 0.05. This is the first study to evaluate and prove competitive performance of the ion-current-based approach for assigning significance to proteins with small changes. By comparison, other methods showed remarkably inferior performance. ICan can be broadly applicable to reliable and sensitive proteomic survey of multiple biological samples with the use of high-resolution MS. Moreover, many key features evaluated and optimized here such as normalization, protein ratio determination, and statistical analyses are also valuable for data analysis by isotope-labeling methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。