Dynamic changes in gene expression that occur during the period of spontaneous functional regression in the rhesus macaque corpus luteum

恒河猴黄体自发功能衰退期间基因表达的动态变化

阅读:5
作者:Randy L Bogan, Melinda J Murphy, Jon D Hennebold

Abstract

Luteolysis of the corpus luteum (CL) during nonfertile cycles involves a cessation of progesterone (P4) synthesis (functional regression) and subsequent structural remodeling. The molecular processes responsible for initiation of luteal regression in the primate CL are poorly defined. Therefore, a genomic approach was used to systematically identify differentially expressed genes in the rhesus macaque CL during spontaneous luteolysis. CL were collected before [d 10-11 after LH surge, mid-late (ML) stage] or during (d 14-16, late stage) functional regression. Based on P4 levels, late-stage CL were subdivided into functional-late (serum P4 > 1.5 ng/ml) and functionally regressed late (FRL) (serum P4 < 0.5 ng/ml) groups (n = 4 CL per group). Total RNA was isolated, labeled, and hybridized to Affymetrix genome microarrays that contain elements representing the entire rhesus macaque transcriptome. With the ML stage serving as the baseline, there were 681 differentially expressed transcripts (>2-fold change; P < 0.05) that could be categorized into three primary patterns of expression: 1) increasing from ML through FRL; 2) decreasing from ML through FRL; and 3) increasing ML to functional late, followed by a decrease in FRL. Ontology analysis revealed potential mechanisms and pathways associated with functional and/or structural regression of the macaque CL. Quantitative real-time PCR was used to validate microarray expression patterns of 13 genes with the results being consistent between the two methodologies. Protein levels were found to parallel mRNA profiles in four of five differentially expressed genes analyzed by Western blot. Thus, this database will facilitate the identification of mechanisms involved in primate luteal regression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。