Therapeutic Effect of Human Adipocyte-derived Stem Cell-derived Exosomes on a Transgenic Mouse Model of Parkinson's Disease

人类脂肪干细胞来源的外泌体对帕金森病转基因小鼠模型的治疗作用

阅读:5
作者:Lung Chan #, Wayne Hsu #, Kai-Yun Chen, Weu Wang, Yi-Chieh Hung, Chien-Tai Hong

Aim

Stem cell therapy and regenerative medicine are promising for treating Parkinson's disease (PD) not only for the potential for cell replacement but also for the paracrine effect of stem cell secretion, especially proteins and nucleotide-enriched exosomes. This study investigated the neuroprotective effect of exosomes secreted from human adipocyte-derived stem cells (hADSCs) on PD. Materials and

Conclusion

hADSC-derived exosomes were neuroprotective in this in vivo mouse model of PD, likely because of their anti-inflammatory effect. Use of hADSC-derived exosomes may offer several beneficial effects in stem cell therapy. Since they can also be produced at an industrial level, they are a promising treatment option for PD and other neurodegenerative diseases.

Methods

hADSCs were isolated from the visceral fat tissue of individuals without PD who underwent bariatric surgery and were validated using surface markers and differentiation ability. Exosomes were isolated from the culture medium of hADSCs through serial ultracentrifugation and validated. Condensed exosomes were administered intravenously to 12-week-old MitoPark mice, transgenic parkinsonism mouse model with conditional knockout of mitochondrial transcription factor A in dopaminergic neurons, monthly for 3 months. Motor function, gait, and memory were assessed monthly, and immunohistochemical analysis of neuronal and inflammatory markers was performed at the end of the experiments.

Results

The hADSC-derived exosome-treated mice exhibited better motor function in beam walking and gait analyses than did the untreated mice. In the novel object recognition tests, the exosome-treated mice retained better memory function. Immunohistochemical analysis revealed that although exosome treatment did not prevent the loss of dopaminergic neurons in the substantia nigra of mice, it down-regulated microglial activation and neuroinflammation in the midbrain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。