Dissolved gases from pressure changes in the lungs elicit an immune response in human peripheral blood

肺部压力变化产生的溶解气体引发人类外周血的免疫反应

阅读:5
作者:Abigail G Harrell, Stephen R Thom, C Wyatt Shields 4th

Abstract

Conventional dogma suggests that decompression sickness (DCS) is caused by nitrogen bubble nucleation in the blood vessels and/or tissues; however, the abundance of bubbles does not correlate with DCS severity. Since immune cells respond to chemical and environmental cues, we hypothesized that the elevated partial pressures of dissolved gases drive aberrant immune cell phenotypes in the alveolar vasculature. To test this hypothesis, we measured immune responses within human lung-on-a-chip devices established with primary alveolar cells and microvascular cells. Devices were pressurized to 1.0 or 3.5 atm and surrounded by normal alveolar air or oxygen-reduced air. Phenotyping of neutrophils, monocytes, and dendritic cells as well as multiplexed ELISA revealed that immune responses occur within 1 hour and that normal alveolar air (i.e., hyperbaric oxygen and nitrogen) confer greater immune activation. This work strongly suggests innate immune cell reactions initiated at elevated partial pressures contribute to the etiology of DCS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。