Role of Ligand Shell Density in the Diffusive Behavior of Nanoparticles in Hydrogels

配体壳密度对水凝胶中纳米粒子扩散行为的影响

阅读:8
作者:Paige J Moncure, Jill E Millstone, Jennifer E Laaser

Abstract

The diffusion coefficients of poly(ethylene glycol) methyl ether thiol (PEGSH)-functionalized gold nanoparticles (NPs) with different effective grafting densities were measured in polyacrylamide hydrogels. The NP core size was held constant, and the NPs were functionalized with mixtures of short oligomeric ligands (254 Da PEGSH) and longer (either 1 or 2 kDa PEGSH) ligands. The ratio of short and long ligands was varied such that the grafting density of the high-molecular-weight (MW) ligand ranged from approximately 1 to 100 high-MW ligands/NP. The diffusion coefficients of the NPs were then measured in gels with varying average mesh sizes. The measured diffusion coefficients decreased with higher MW ligand density. Interestingly, the diffusion coefficients for NPs with high effective grafting densities were well-predicted by their hydrodynamic diameters, but the diffusion coefficients for NPs with low effective grafting densities were higher than expected from their hydrodynamic diameters. These results suggest that crowding in the NP ligand shell influences the mechanism of diffusion, with lower grafting densities allowing ligand chain relaxations that facilitate movement through the gel. This work brings new insights into the factors that dictate how NPs move through hydrogels and will inform the development of models for applications such as drug delivery in complex viscoelastic biological materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。