Minimizing ATP depletion by oxygen scavengers for single-molecule fluorescence imaging in live cells

最大限度地减少氧清除剂对活细胞单分子荧光成像的 ATP 消耗

阅读:5
作者:Seung-Ryoung Jung, Yi Deng, Christopher Kushmerick, Charles L Asbury, Bertil Hille, Duk-Su Koh

Abstract

The stability of organic dyes against photobleaching is critical in single-molecule tracking and localization microscopy. Since oxygen accelerates photobleaching of most organic dyes, glucose oxidase is commonly used to slow dye photobleaching by depleting oxygen. As demonstrated here, pyranose-2-oxidase slows bleaching of Alexa647 dye by ∼20-fold. However, oxygen deprivation may pose severe problems for live cells by reducing mitochondrial oxidative phosphorylation and ATP production. We formulate a method to sustain intracellular ATP levels in the presence of oxygen scavengers. Supplementation with metabolic intermediates including glyceraldehyde, glutamine, and α-ketoisocaproate maintained the intracellular ATP level for at least 10 min by balancing between FADH2 and NADH despite reduced oxygen levels. Furthermore, those metabolites supported ATP-dependent synthesis of phosphatidylinositol 4,5-bisphosphate and internalization of PAR2 receptors. Our method is potentially relevant to other circumstances that involve acute drops of oxygen levels, such as ischemic damage in the brain or heart or tissues for transplantation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。