Identification and validation of fusidic acid and flufenamic acid as inhibitors of SARS-CoV-2 replication using DrugSolver CavitomiX

使用 DrugSolver CavitomiX 鉴定和验证夫西地酸和氟芬那酸作为 SARS-CoV-2 复制抑制剂的作用

阅读:15
作者:M Hetmann, C Langner, V Durmaz, M Cespugli, K Köchl, A Krassnigg, K Blaschitz, S Groiss, M Loibner, D Ruau, K Zatloukal, K Gruber, G Steinkellner, C C Gruber0

Abstract

In this work, we present DrugSolver CavitomiX, a novel computational pipeline for drug repurposing and identifying ligands and inhibitors of target enzymes. The pipeline is based on cavity point clouds representing physico-chemical properties of the cavity induced solely by the protein. To test the pipeline's ability to identify inhibitors, we chose enzymes essential for SARS-CoV-2 replication as a test system. The active-site cavities of the viral enzymes main protease (Mpro) and papain-like protease (Plpro), as well as of the human transmembrane serine protease 2 (TMPRSS2), were selected as target cavities. Using active-site point-cloud comparisons, it was possible to identify two compounds-flufenamic acid and fusidic acid-which show strong inhibition of viral replication. The complexes from which fusidic acid and flufenamic acid were derived would not have been identified using classical sequence- and structure-based methods as they show very little structural (TM-score: 0.1 and 0.09, respectively) and very low sequence (~ 5%) identity to Mpro and TMPRSS2, respectively. Furthermore, a cavity-based off-target screening was performed using acetylcholinesterase (AChE) as an example. Using cavity comparisons, the human carboxylesterase was successfully identified, which is a described off-target for AChE inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。