Autophagy in load-induced heart disease

负荷诱发心脏病中的自噬

阅读:4
作者:Hongxin Zhu, Beverly A Rothermel, Joseph A Hill

Abstract

The heart is a highly plastic organ capable of remodeling in response to changes in physiological or pathological demand. When workload increases, the heart compensates through hypertrophic growth of individual cardiomyocytes to increase cardiac output. However, sustained stress, such as occurs with hypertension or following myocardial infarction, triggers changes in sarcomeric protein composition and energy metabolism, loss of cardiomyocytes, ventricular dilation, reduced pump function, and ultimately heart failure. It has been known for some time that autophagy is active in cardiomyocytes, occurring at increased levels in disease. Yet the potential contribution of cardiomyocyte autophagy to ventricular remodeling and disease pathogenesis has only recently been explored. This latter fact stems largely from the recent emergence of tools to probe molecular mechanisms governing cardiac plasticity and to define the role of autophagic flux in the context of heart disease. In this chapter, we briefly review prominent mouse models useful in the study of load-induced heart disease and standard techniques used to assess whether a molecular or cellular event is adaptive or maladaptive. We then outline methods available for monitoring autophagic activity in the heart, providing detailed protocols for several techniques unique to working with heart and other striated muscles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。