Characterization and epitope mapping of Dengue virus type 1 specific monoclonal antibodies

登革热病毒 1 型特异性单克隆抗体的表征和表位定位

阅读:7
作者:Wen-Hung Chen, Feng-Pai Chou, Yu-Kuo Wang, Sheng-Cih Huang, Chuan-Hung Cheng, Tung-Kung Wu

Background

Dengue virus (DV) infection causes a spectrum of clinical diseases ranging from dengue fever to a life-threatening dengue hemorrhagic fever. Four distinct serotypes (DV1-4), which have similar genome sequences and envelope protein (E protein) antigenic properties, were divided. Among these 4 serotypes, DV1 usually causes predominant infections and fast diagnosis and effective treatments are urgently required to prevent further hospitalization and casualties.

Conclusions

Our results showed two selected mAbs DV1-E1 and DV1-E2 can specifically target and significantly neutralize DV1. With further research these two mAbs might be applied in the development of DV1 specific serologic diagnosis and used as a feasible treatment option for DV1 infection. The identification of DV1 mAbs epitope with key residues can also provide vital information for vaccine design.

Methods

To develop antibodies specifically targeting and neutralizing DV1, we immunized mice with UV-inactivated DV1 viral particles and recombinant DV1 E protein from residue 1 to 395 (E395), and then generated 12 anti-E monoclonal antibodies (mAbs) as the candidates for a series of characterized assays such as ELISA, dot blot, immunofluorescence assay, western blot, and foci forming analyses.

Results

Among the mAbs, 10 out of 12 showed cross-reactivity to four DV serotypes as well as Japanese encephalitis virus (JEV) in different cross-reactivity patterns. Two particular mAbs, DV1-E1 and DV1-E2, exhibited strong binding specificity and neutralizing activity against DV1 and showed no cross-reactivity to DV2, DV3, DV4 or JEV-infected cells as characterized by ELISA, dot blot, immunofluorescence assay, western blot, and foci forming analyses. Using peptide coated indirect ELISA, we localized the neutralizing determinants of the strongly inhibitory mAbs to a sequence-unique epitope on the later-ridge of domain III of the DV1 E protein, centered near residues T346 and D360 (346TQNGRLITANPIVTD360). Interestingly, the amino acid sequence of the epitope region is highly conserved among different genotypes of DV1 but diverse from DV2, DV3, DV4 serotypes and other flaviviruses. Conclusions: Our results showed two selected mAbs DV1-E1 and DV1-E2 can specifically target and significantly neutralize DV1. With further research these two mAbs might be applied in the development of DV1 specific serologic diagnosis and used as a feasible treatment option for DV1 infection. The identification of DV1 mAbs epitope with key residues can also provide vital information for vaccine design.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。