Histidine catabolism is a major determinant of methotrexate sensitivity

组氨酸分解代谢是甲氨蝶呤敏感性的主要决定因素

阅读:6
作者:Naama Kanarek, Heather R Keys, Jason R Cantor, Caroline A Lewis, Sze Ham Chan, Tenzin Kunchok, Monther Abu-Remaileh, Elizaveta Freinkman, Lawrence D Schweitzer, David M Sabatini

Abstract

The chemotherapeutic drug methotrexate inhibits the enzyme dihydrofolate reductase1, which generates tetrahydrofolate, an essential cofactor in nucleotide synthesis2. Depletion of tetrahydrofolate causes cell death by suppressing DNA and RNA production3. Although methotrexate is widely used as an anticancer agent and is the subject of over a thousand ongoing clinical trials4, its high toxicity often leads to the premature termination of its use, which reduces its potential efficacy5. To identify genes that modulate the response of cancer cells to methotrexate, we performed a CRISPR-Cas9-based screen6,7. This screen yielded FTCD, which encodes an enzyme-formimidoyltransferase cyclodeaminase-that is required for the catabolism of the amino acid histidine8, a process that has not previously been linked to methotrexate sensitivity. In cultured cancer cells, depletion of several genes in the histidine degradation pathway markedly decreased sensitivity to methotrexate. Mechanistically, histidine catabolism drains the cellular pool of tetrahydrofolate, which is particularly detrimental to methotrexate-treated cells. Moreover, expression of the rate-limiting enzyme in histidine catabolism is associated with methotrexate sensitivity in cancer cell lines and with survival rate in patients. In vivo dietary supplementation of histidine increased flux through the histidine degradation pathway and enhanced the sensitivity of leukaemia xenografts to methotrexate. The histidine degradation pathway markedly influences the sensitivity of cancer cells to methotrexate and may be exploited to improve methotrexate efficacy through a simple dietary intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。