Development of In Vitro Bioengineered Vascular Grafts for Microsurgery and Vascular Surgery Applications

开发用于显微外科和血管外科应用的体外生物工程血管移植物

阅读:5
作者:Gurtej Singh, John Cordero, Brody Wiles, Miltiadis N Tembelis, Kai-Li Liang, Miriam Rafailovich, Marcia Simon, Sami U Khan, Duc T Bui, Alexander B Dagum

Conclusions

We were successfully able to employ a unique method to synthesize a multi-layered vascularized graft having adequate biological and mechanical properties. Studies are ongoing involving implantation of this developed vascular graft in the rat femoral artery and characterization of parameters such as vascular remodeling and patency.

Methods

Biomaterials, gelatin and fibrin, were used to develop a two-layered vascular graft. The graft was seeded with endothelial cells and imaged using confocal microscopy. The graft's architecture and its mechanical properties were also characterized using histology, Scanning Electron Microscopy and rheological studies.

Results

Our methodology resulted in the development of a vascular graft with precise spatial localization of the two layers. The endothelial cells fully covered the lumen of the developed vascular graft, thus providing a non-thrombogenic surface. The elastic modulus of the biomaterials employed in this graft was found to be 5.186 KPa, paralleling that of internal mammary artery. The burst pressure of this graft was also measured and was found close to that of the saphenous vein (~2000 mm Hg). Conclusions: We were successfully able to employ a unique method to synthesize a multi-layered vascularized graft having adequate biological and mechanical properties. Studies are ongoing involving implantation of this developed vascular graft in the rat femoral artery and characterization of parameters such as vascular remodeling and patency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。