Fluorescence lifetime-based pH mapping of tumors in vivo using genetically encoded sensor SypHerRed

使用基因编码传感器 SypHerRed 基于荧光寿命对体内肿瘤进行 pH 映射

阅读:6
作者:Liubov Shimolina, Ekaterina Potekhina, Irina Druzhkova, Maria Lukina, Varvara Dudenkova, Vsevolod Belousov, Vladislav Shcheslavskiy, Elena Zagaynova, Marina Shirmanova

Abstract

Changes in intracellular pH (pHi) reflect metabolic states of cancer cells during tumor growth and dissemination. Therefore, monitoring of pHi is essential for understanding the metabolic mechanisms that support cancer progression. Genetically encoded fluorescent pH sensors have become irreplaceable tools for real-time tracking pH in particular subcellular compartments of living cells. However, ratiometric readout of most of the pH probes is poorly suitable to measure pH in thick samples ex vivo or tissues in vivo including solid tumors. Fluorescence lifetime imaging (FLIM) is a promising alternative to the conventional fluorescent microscopy. Here, we present a quantitative approach to map pHi in cancer cells and tumors in vivo, relying on fluorescence lifetime of a genetically encoded pH sensor SypHerRed. We demonstrate the utility of SypHerRed in visualizing pHi in cancer cell culture and in mouse tumor xenografts using fluorescence lifetime imaging microscopy and macroscopy. For the first time to our knowledge, the absolute pHi value is obtained for tumors in vivo by an optical technique. In addition, we demonstrate the possibility of simultaneous detection of pHi and endogenous fluorescence of metabolic cofactor NADH, which provides a complementary insight into metabolic aspects of cancer. Fluorescence lifetime-based readout and red-shifted spectra make pH sensor SypHerRed a promising instrument for multiparameter in vivo imaging applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。