Reversible manipulation of the G-quadruplex structures and enzymatic reactions through supramolecular host-guest interactions

通过超分子主客体相互作用可逆地操纵 G-四链体结构和酶促反应

阅读:6
作者:Tian Tian, Yanyan Song, Lai Wei, Jiaqi Wang, Boshi Fu, Zhiyong He, Xi-Ran Yang, Fan Wu, Guohua Xu, Si-Min Liu, Conggang Li, Shaoru Wang, Xiang Zhou

Abstract

Supramolecular chemistry addresses intermolecular forces and consequently promises great flexibility and precision. Biological systems are often the inspirations for supramolecular research. The G-quadruplex (G4) belongs to one of the most important secondary structures in nucleic acids. Until recently, the supramolecular manipulation of the G4 has not been reported. The present study is the first to disclose a supramolecular switch for the reversible control of human telomere G4s. Moreover, this supramolecular switch has been successfully used to manipulate an enzymatic reaction. Using various methods, we show that cucurbit[7]uril preferably locks and encapsulates the positively charged piperidines of Razo through supramolecular interactions. They can switch the conformations of the DNA inhibitor between a flexible state and the rigid G4 and are therefore responsible for the reversible control of the thrombin activity. Thus, our findings open a promising route and exhibit potential applications in future studies of chemical biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。