Contactin 1 modulates pegylated arginase resistance in small cell lung cancer through induction of epithelial-mesenchymal transition

Contactin 1 通过诱导上皮-间质转化调节小细胞肺癌中的聚乙二醇化精氨酸酶耐药性

阅读:5
作者:Shi Xu, Sze-Kwan Lam, Paul Ning-Man Cheng, James Chung-Man Ho

Abstract

Drug resistance is a major hurdle in the treatment of small cell lung cancer (SCLC). Previously we demonstrated the potential anticancer effect of pegylated arginase BCT-100 in SCLC cell lines and xenograft models. To facilitate future clinical application of BCT-100 in SCLC treatment, we elucidated the potential mechanisms that underlie acquired drug resistance to BCT-100. H446 and H526 SCLC cells were serially cultured in stepwise increasing concentrations of BCT-100 until stable BCT-100-resistant cell lines emerged (H446-BR and H526-BR). Compared with parent cells, H446-BR and H526-BR displayed stronger migration ability, anoikis resistance and EMT progression. Gene chip assay was employed to select three potential targets (CDH17, CNTN-1 and IGF2BP1). Silencing CNTN-1 rather than CDH17 or IGF2BP1 in H446-BR and H526-BR cells re-sensitized resistant cells to BCT-100 treatment and attenuated the epithelial-mesenchymal transition (EMT) phenotype. The AKT signaling pathway was activated in H446-BR and H526-BR cells accompanied by EMT progression, and AKT inhibitor LY294002 reversed the EMT progression in resistant cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。