DUSP14 rescues cerebral ischemia/reperfusion (IR) injury by reducing inflammation and apoptosis via the activation of Nrf-2

DUSP14 通过激活 Nrf-2 减少炎症和细胞凋亡,挽救脑缺血/再灌注 (IR) 损伤

阅读:6
作者:Song Jianrong, Zhao Yanjun, Yu Chen, Xu Jianwen

Abstract

Ischemic stroke is the second most common cause of death, a major cause of acquired disability in adults. However, the pathogenesis that contributes to ischemic stroke has not been fully understood. Dual-specificity phosphatase 14 (DUSP14, also known as MKP6) is a MAP kinase phosphatase, playing important role in regulating various cellular processes, including oxidative stress and inflammation. However, its effects on cerebral ischemia/reperfusion (IR) are unclear. In the study, we found that DUSP14 expression was decreased responding to IR surgery. Over-expressing DUSP14 reduced the infarction volume of cerebral IR mice. Cognitive dysfunction was also improved in mice with DUSP14 over-expression. Promoting DUSP14 expression markedly reduced the activation of glial cells, as evidenced by the decreases in GFAP and Iba-1 expressions in mice with cerebral IR injury. In addition, inflammatory response induced by cerebral IR injury was inhibited in DUSP14 over-expressed mice, as proved by the reduced expression of tumor necrosis factor (TNF)-α and interleukin 1β (IL-1β). Furthermore, oxidative stress was markedly reduced by DUSP14 over-expression through elevating nuclear factor-erythroid 2 related factor 2 (Nrf-2) signaling pathway. Importantly, we found that DUSP14 could interact with Nrf-1, which thereby protected mice against cerebral IR injury. In vitro, we also found that repressing Nrf-2 expression abrogated DUSP14 over-expression-reduced inflammation and ROS generation. Consistent with the anti-inflammatory effect of DUSP14, reducing the production of reactive oxygen species (ROS) also down-regulated TNF-α and IL-1β expressions. Collectively, elevated DUSP14 alleviated brain damage from cerebral IR injury through Nrf-2-regulated anti-oxidant signaling pathway, and the restraining of inflammatory response. These results suggested that DUSP14 might be a potential therapeutic target to prevent ischemic stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。