Hit-and-Run Epigenetic Editing for Vectors of Snail-Borne Parasitic Diseases

针对蜗牛传播寄生虫病媒介的“肇事逃逸”表观遗传编辑

阅读:5
作者:Nelia Luviano, David Duval, Wannaporn Ittiprasert, Jean-Francois Allienne, Geneviève Tavernier, Cristian Chaparro, Celine Cosseau, Christoph Grunau

Abstract

Snail-borne parasitic diseases represent an important challenge to human and animal health. Control strategies that target the intermediate snail host has proved very effective. Epigenetic mechanisms are involved in developmental processes and therefore play a fundamental role in developmental variation. DNA methylation is an important epigenetic information carrier in eukaryotes that plays a major role in the control of chromatin structure. Epigenome editing tools have been instrumental to demonstrate functional importance of this mark for gene expression in vertebrates. In invertebrates, such tools are missing, and the role of DNA methylation remains unknown. Here we demonstrate that methylome engineering can be used to modify in vivo the CpG methylation level of a target gene in the freshwater snail Biomphalaria glabrata, intermediate host of the human parasite Schistosoma mansoni. We used a dCas9-SunTag-DNMT3A complex and synthetic sgRNA to transfect B. glabrata embryos and observed an increase of CpG methylation at the target site in 50% of the hatching snails.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。