Smooth muscle titin Zq domain interaction with the smooth muscle alpha-actinin central rod

平滑肌肌联蛋白 Zq 结构域与平滑肌 α-肌动蛋白中心杆相互作用

阅读:8
作者:Richard J Chi, Alanna R Simon, Ewa A Bienkiewicz, Augustine Felix, Thomas C S Keller 3rd

Abstract

Actin-myosin II filament-based contractile structures in striated muscle, smooth muscle, and nonmuscle cells contain the actin filament-cross-linking protein alpha-actinin. In striated muscle Z-disks, alpha-actinin interacts with N-terminal domains of titin to provide a structural linkage crucial for the integrity of the sarcomere. We previously discovered a long titin isoform, originally smitin, hereafter sm-titin, in smooth muscle and demonstrated that native sm-titin interacts with C-terminal EF hand region and central rod R2-R3 spectrin-like repeat region sites in alpha-actinin. Reverse transcription-PCR analysis of RNA from human adult smooth muscles and cultured rat smooth muscle cells and Western blot analysis with a domain-specific antibody presented here revealed that sm-titin contains the titin gene-encoded Zq domain that may bind to the alpha-actinin R2-R3 central rod domain as well as Z-repeat domains that bind to the EF hand region. We investigated whether the sm-titin Zq domain binds to alpha-actinin R2 and R3 spectrin repeat-like domain loops that lie in proximity with two-fold symmetry on the surface of the central rod. Mutations in alpha-actinin R2 and R3 domain loop residues decreased interaction with expressed sm-titin Zq domain in glutathione S-transferase pull-down and solid phase binding assays. Alanine mutation of a region of the Zq domain with high propensity for alpha-helix formation decreased apparent Zq domain dimer formation and decreased Zq interaction with the alpha-actinin R2-R3 region in surface plasmon resonance assays. We present a model in which two sm-titin Zq domains interact with each other and with the two R2-R3 sites in the alpha-actinin central rod.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。