Comparison of contractile mechanisms of sphingosylphosphorylcholine and sphingosine-1-phosphate in rabbit coronary artery

鞘氨醇磷酸胆碱与鞘氨醇-1-磷酸酯对兔冠状动脉收缩机制的比较

阅读:4
作者:Soo-Kyoung Choi, Duck-Sun Ahn, Young-Ho Lee

Aims

Although stimulation with sphingosylphosphorylcholine (SPC) or sphingosine-1-phosphate (S1P) generally leads to similar vascular responses, the contractile patterns and their underlying signalling mechanisms are often distinct. We investigated the different reliance upon Ca2+-dependent and Ca2+-sensitizing mechanisms of constriction in response to SPC or S1P in coronary arteries.

Conclusion

Our results suggest that constriction of coronary arteries in response to the bioactive lipid S1P or SPC occurs by distinct signalling pathways. Activation of the RhoA/RhoA-associated kinase pathway and subsequent phosphorylation of MYPT1 play a key role in SPC-induced coronary contraction, whereas elevation of [Ca2+]i is crucial for S1P-induced coronary constriction.

Results

Contractile responses, changes in [Ca2+]i, and phosphorylation of myosin light chain phosphatase-targeting subunit (MYPT1) were measured. SPC induced a concentration-dependent sustained contraction. S1P evoked a rapid rise in force (initial transient), which was followed by a secondary sustained force. In the absence of extracellular Ca2+, the concentration dependency of constriction to SPC was shifted to the right, but with no change in maximum force, whereas S1P-induced contraction was significantly blunted. Cyclopiazonic acid (CPA) significantly decreased the initial transient force induced by S1P. In isolated single cells, S1P markedly increased [Ca2+]i, whereas only a modest elevation was noted with SPC. The S1P-induced elevation of [Ca2+]i was abolished by pre-treatment with CPA and was significantly reduced in the absence of extracellular Ca2+. In beta-escin-permeabilized strips, SPC augmented pCa 6.3-induced force; this was significantly inhibited by fasudil hydrochloride. S1P induced little or no augmentation of pCa 6.3-induced force. In intact arteries, SPC-induced contraction was completely inhibited by fasudil hydrochloride. Fasudil hydrochloride had no effect on the initial transient force induced by S1P but significantly inhibited the secondary sustained force. SPC induced a several-fold increase in Thr696 and Thr853 phosphorylation of MYPT1, but S1P did not affect phosphorylation of MYPT1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。