Development and evaluation of a synthetic opioid targeted gas chromatography mass spectrometry (GC-MS) method

合成阿片类药物靶向气相色谱质谱 (GC-MS) 方法的开发和评估

阅读:6
作者:Edward Sisco, Amber Burns, Arun S Moorthy

Abstract

As seized drug casework becomes increasingly complex due to the continued prevalence of emerging drugs, laboratories are often looking for new analytical approaches including developing methods for the analysis of specific compounds classes. Recent efforts have focused on the development of targeted gas chromatography mass spectrometry (GC-MS) confirmation methods to compliment the information-rich screening results produced by techniques like direct analysis in real time mass spectrometry (DART-MS). In this work, a method for the confirmation of synthetic opioids and related compounds was developed and evaluated. An 11-component test solution was used to develop a method that focused on minimizing overlapping retention time acceptance windows and understanding the influence of instrument parameters on reproducibility and sensitivity. Investigated settings included column type, flow rate, temperature program, inlet temperature, source temperature, and tune type. Using a DB-200 column, a 35-min temperature ramped method was created. It was evaluated against a suite of 222 synthetic opioids and related compounds, and successfully differentiated all but four compound pairs based on nonoverlapping retention time acceptance windows or objectively different mass spectra. Compared to a general confirmatory method used in casework, the targeted method was up to 25 times more sensitive and provided at least a two-fold increase in retention time differences. Analysis of extracts from actual case samples successfully demonstrated utility of the method and showed no instance of carryover, although the high polarity column required wider retention time windows than other columns.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。