Affinity and kinetic modulation of polyamide-DNA interactions by N-modification of the heterocycles

通过杂环的 N-修饰对聚酰胺-DNA 相互作用的亲和力和动力学调节

阅读:4
作者:Joseph P Ramos, Balaji Babu, Sameer Chavda, Yang Liu, Adam Plaunt, Amanda Ferguson, Mia Savagian, Megan Lee, Samuel Tzou, Shicai Lin, Konstantinos Kiakos, Shuo Wang, Moses Lee, John A Hartley, W David Wilson

Abstract

Synthetic N-methyl imidazole and N-pyrrole containing polyamides (PAs) that can form "stacked" dimers can be programmed to target and bind to specific DNA sequences and control gene expression. To accomplish this goal, the development of PAs with lower molecular mass which allows for the molecules to rapidly penetrate cells and localize in the nucleus, along with increased water solubility, while maintaining DNA binding sequence specificity and high binding affinity is key. To meet these challenges, six novel f-ImPy*Im PA derivatives that contain different orthogonally positioned moieties were designed to target 5'-ACGCGT-3'. The synthesis and biophysical characterization of six f-ImPy*Im were determined by CD, ΔTM, DNase I footprinting, SPR, and ITC studies, and were compared with those of their parent compound, f-ImPyIm. The results gave evidence for the minor groove binding and selectivity of PAs 1 and 6 for the cognate sequence 5'-ACGCGT-3', and with strong affinity, Keq = 2.8 × 10(8) M(-1) and Keq = 6.2 × 10(7) M(-1), respectively. The six novel PAs presented in this study demonstrated increased water solubility, while maintaining low molecular mass, sequence specificity, and binding affinity, addressing key issues in therapeutic development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。