Role of Nox isoforms in angiotensin II-induced oxidative stress and endothelial dysfunction in brain

Nox 同工酶在血管紧张素 II 诱导的脑氧化应激和内皮功能障碍中的作用

阅读:4
作者:Sophocles Chrissobolis, Botond Banfi, Christopher G Sobey, Frank M Faraci

Abstract

Angiotensin II (Ang II) promotes vascular disease through several mechanisms including by producing oxidative stress and endothelial dysfunction. Although multiple potential sources of reactive oxygen species exist, the relative importance of each is unclear, particularly in individual vascular beds. In these experiments, we examined the role of NADPH oxidase (Nox1 and Nox2) in Ang II-induced endothelial dysfunction in the cerebral circulation. Treatment with Ang II (1.4 mg·kg(-1)·day(-1) for 7 days), but not vehicle, increased blood pressure in all groups. In wild-type (WT; C57Bl/6) mice, Ang II reduced dilation of the basilar artery to the endothelium-dependent agonist acetylcholine compared with vehicle but had no effect on responses in Nox2-deficient (Nox2(-/y)) mice. Ang II impaired responses to acetylcholine in Nox1 WT (Nox1(+/y)) and caused a small reduction in responses to acetylcholine in Nox1-deficient (Nox1(-/y)) mice. Ang II did not impair responses to the endothelium-independent agonists nitroprusside or papaverine in either group. In WT mice, Ang II increased basal and phorbol-dibutyrate-stimulated superoxide production in the cerebrovasculature, and these increases were abolished in Nox2(-/y) mice. Overall, these data suggest that Nox2 plays a relatively prominent role in mediating Ang II-induced oxidative stress and cerebral endothelial dysfunction, with a minor role for Nox1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。