Membrane fluidity is a key modulator of membrane binding, insertion, and activity of 5-lipoxygenase

膜流动性是膜结合、插入和 5-脂氧合酶活性的关键调节因子

阅读:5
作者:Abhay H Pande, Shan Qin, Suren A Tatulian

Abstract

Mammalian 5-lipoxygenase (5-LO) catalyzes conversion of arachidonic acid to leukotrienes, potent mediators of inflammation and allergy. Upon cell stimulation, 5-LO selectively binds to nuclear membranes and becomes activated, yet the mechanism of recruitment of 5-LO to nuclear membranes and the mode of 5-LO-membrane interactions are poorly understood. Here we show that membrane fluidity is an important determinant of membrane binding strength of 5-LO, penetration into the membrane hydrophobic core, and activity of the enzyme. The membrane binding strength and activity of 5-LO increase with the degree of lipid acyl chain cis-unsaturation and reach a plateau with 1-palmitoyl-2-arachidonolyl-sn-glycero-3-phosphocholine (PAPC). A fraction of tryptophans of 5-LO penetrate into the hydrocarbon region of fluid PAPC membranes, but not into solid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine membranes. Our data lead to a novel concept of membrane binding and activation of 5-LO, suggesting that arachidonic-acid-containing lipids, which are present in nuclear membranes at higher fractions than in other cellular membranes, may facilitate preferential membrane binding and insertion of 5-LO through increased membrane fluidity and may thereby modulate the activity of the enzyme. The data presented in this article and earlier data allow construction of a model for membrane-bound 5-LO, including the angular orientation and membrane insertion of the protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。