U7 small nuclear ribonucleoprotein represses histone gene transcription in cell cycle-arrested cells

U7 小核糖核蛋白抑制细胞周期停滞细胞中的组蛋白基因转录

阅读:8
作者:Takashi Ideue, Shungo Adachi, Takao Naganuma, Akie Tanigawa, Tohru Natsume, Tetsuro Hirose

Abstract

Histone gene expression is tightly coordinated with DNA replication, as it is activated at the onset of S phase and suppressed at the end of S phase. Replication-dependent histone gene expression is precisely controlled at both transcriptional and posttranscriptional levels. U7 small nuclear ribonucleoprotein (U7 snRNP) is involved in the 3'-end processing of nonpolyadenylated histone mRNAs, which is required for S phase-specific gene expression. The present study reports a unique function of U7 snRNP in the repression of histone gene transcription under cell cycle-arrested conditions. Elimination of U7 snRNA with an antisense oligonucleotide in HeLa cells as well as in nontransformed human lung fibroblasts resulted in elevated levels of replication-dependent H1, H2A, H2B, H3, and H4 histone mRNAs but not of replication-independent H3F3B histone mRNA. An analogous effect was observed upon depletion of Lsm10, a component of the U7 snRNP-specific Sm ring, with siRNA. Pulse-chase experiments revealed that U7 snRNP acts to repress transcription without remarkably altering mRNA stability. Mass spectrometric analysis of the captured U7 snRNP from HeLa cell extracts identified heterogeneous nuclear (hn)RNP UL1 as a U7 snRNP interaction partner. Further knockdown and overexpression experiments revealed that hnRNP UL1 is responsible for U7 snRNP-dependent transcriptional repression of replication-dependent histone genes. Chromatin immunoprecipitation confirmed that hnRNP UL1 is recruited to the histone gene locus only when U7 snRNP is present. These findings support a unique mechanism of snRNP-mediated transcriptional control that restricts histone synthesis to S phase, thereby preventing the potentially toxic effects of histone synthesis at other times in the cell cycle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。