Liquid-liquid phase separation in hemoglobins: distinct aggregation mechanisms of the beta6 mutants

血红蛋白中的液-液相分离:β6 突变体的独特聚集机制

阅读:6
作者:Qiuying Chen, Peter G Vekilov, Ronald L Nagel, Rhoda Elison Hirsch

Abstract

Reversible liquid-liquid (L-L) phase separation in the form of high concentration hemoglobin (Hb) solution droplets is favored in an equilibrium with a low-concentration Hb solution when induced by inositol-hexaphosphate in the presence of polyethylene glycol 4000 at pH 6.35 HEPES (50 mM). The L-L phase separation of Hb serves as a model to elucidate intermolecular interactions that may give rise to accelerated nucleation kinetics of liganded HbC (beta6 Lys) compared to HbS (beta6 Val) and HbA (beta6 Glu). Under conditions of low pH (pH 6.35) in the presence of inositol-hexaphosphate, COHb assumes an altered R-state. The phase lines for the three Hb variants in concentration and temperature coordinates indicate that liganded HbC exhibits a stronger net intermolecular attraction with a longer range than liganded HbS and HbA. Over time, L-L phase separation gives rise to amorphous aggregation and subsequent formation of crystals of different kinetics and habits, unique to the individual Hb. The composite of R- and T-like solution aggregation behavior indicates that this is a conformationally driven event. These results indicate that specific contact sites, thermodynamics, and kinetics all play a role in L-L phase separation and differ for the beta6 mutant hemoglobins compared to HbA. In addition, the dense liquid droplet interface or aggregate interface noticeably participates in crystal nucleation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。