Glucosamine inhibits extracellular matrix accumulation in experimental diabetic nephropathy

葡萄糖胺抑制实验性糖尿病肾病中的细胞外基质积累

阅读:8
作者:Loic Teuma, Rachana Eshwaran, Ulrich Tawokam Fongang, Johanna Wieland, Feng Shao, Maria Luisa Lagana, Yixin Wang, Ane Agaci, Hans-Peter Hammes, Yuxi Feng

Discussion

In summary, this is the first report to show that glucosamine reduces mesangial expansion and inhibits endothelial-mesenchymal transition in diabetic nephropathy. The underlying mechanisms need to be further investigated.

Methods

The aim of the study was to investigate the effect of exogenous administration of glucosamine in the diabetic kidney. A mouse model of streptozotocin-induced diabetic nephropathy in vivo and cultured endothelial cells in vitro were used in the study. The mice were treated with glucosamine for 6 months. Renal function was evaluated by metabolic cage, and histology of the kidney was estimated by periodic acid-schiff (PAS) staining. The expression of related genes was assessed by real-time PCR, immunofluorescence staining, immunoblotting and ELISA.

Results

There was no significant difference in urinary albumin secretion, relative kidney weight, or creatinine clearance between the groups treated with glucosamine and controls. Assessment of the kidney demonstrated reduction in mesangial expansion and fibronectin expression in the diabetic glomeruli treated with glucosamine. Glucosamine treatment significantly decreased α-smooth muscle actin (α-SMA) protein expression in both diabetic and control kidneys, whereas the expression of other fibrosis-related genes and inflammatory factors was unaltered. Moreover, α-SMA colocalized with the endothelial marker CD31 in the diabetic and control kidneys, and glucosamine reduced α-SMA+ ECs in the diabetic glomeruli. In addition, glucosamine suppressed α-SMA expression in endothelial cells treated with or without high glucose.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。