Mitoregulin self-associates to form likely homo-oligomeric pore-like complexes

米托调节蛋白自结合形成可能的同源寡聚孔状复合物

阅读:6
作者:Connor R Linzer, Colleen S Stein, Nathan H Witmer, Zhen Xu, Nicholas J Schnicker, Ryan L Boudreau

Abstract

We and others previously found that a misannotated long noncoding RNA encodes for a conserved mitochondrial transmembrane microprotein named Mitoregulin (Mtln). Beyond an established role for Mtln in lipid metabolism, Mtln has been shown to broadly influence mitochondria, boosting respiratory efficiency and Ca2+ retention capacity, while lowering ROS, yet the underlying mechanisms remain unresolved. Prior studies have identified possible Mtln protein interaction partners; however, a lack of consensus persists, and no claims have been made about Mtln's structure. We noted two key published observations that seemingly remained overlooked: 1) endogenous Mtln co-immunoprecipitates with epitope-tagged Mtln at high efficiency, and 2) Mtln primarily appears to exist in a ∼66 kDa complex. To investigate if Mtln may self-oligomerize into higher-order complexes, we performed co-immunoprecipitation, computational modeling, and native gel assessments of Mtln-containing complexes in cells and tissues and tested whether synthetic Mtln protein itself forms oligomeric complexes. Our combined results provide strong support that Mtln self-associates and likely forms a hexameric pore-like structure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。