Voltammetry of a flavocytochrome c(3): the lowest potential heme modulates fumarate reduction rates

黄素细胞色素 c(3) 的伏安法:最低电位血红素调节富马酸还原速率

阅读:5
作者:J N Butt, J Thornton, D J Richardson, P S Dobbin

Abstract

Iron-induced flavocytochrome c(3), Ifc(3), from Shewanella frigidimarina NCIMB400, derivatized with a 2-pyridyl disulfide label, self-assembles on gold electrodes as a functional array whose fumarate reductase activity as viewed by direct electrochemistry is indistinguishable from that of Ifc(3) adsorbed on gold or graphite electrodes. The enhanced stability of the labeled protein's array permits analysis at a rotating electrode and limiting catalytic currents fit well to a Michaelis-Menten description of enzyme kinetics with K(M) = 56 +/- 20 microM, pH 7.5, comparable to that obtained in solution assays. At fumarate concentrations above 145 microM cyclic voltammetry shows the catalytic response to contain two features. The position and width of the lower potential component centered on -290 mV and corresponding to a one-electron wave implicates the oxidation state of the lowest potential heme of Ifc(3) as a defining feature in the mechanism of fumarate reduction at high turnover rates. We propose the operation of dual pathways for electron transfer to the active site of Ifc(3) with the lowest potential heme acting as an electron relay on one of these pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。