Spectroscopic and functional characterization of nitrophorin 7 from the blood-feeding insect Rhodnius prolixus reveals an important role of its isoform-specific N-terminus for proper protein function

对吸血昆虫 Rhodnius prolixus 中硝基蛋白 7 的光谱和功能表征揭示了其异构体特异性 N 端对正常蛋白质功能的重要作用

阅读:5
作者:Markus Knipp, Fei Yang, Robert E Berry, Hongjun Zhang, Maxim N Shokhirev, F Ann Walker

Abstract

Nitrophorins (NPs) are a class of NO-transporting and histamine-sequestering heme b proteins that occur in the saliva of the bloodsucking insect Rhodnius prolixus. A detailed study of the newly described member, NP7, is presented herein. NO association constants for NP7 [KIII(eq)(NO)] reveal a drastic change when the pH is varied from 5.5 (reflecting the insect's saliva) to slightly above plasma pH (7.5) (>10(9) M-1 --> 4.0 x 10(6) M-1); thus, the protein promotes the storage of NO in the insect's saliva and its release inside the victim's tissues. In contrast to the other nitrophorins, NP1-4, histamine sequestering cannot be accomplished in vivo due to the low binding constant [KIII(eq)(histamine)] of 10(5) M-1 compared to the histamine concentration of 1-10 x 10(-9) M in the blood. A major part of this study deals with the N-terminus, 1Leu-Pro-Gly-Glu-Cys5 of NP7, which is not found in NP1-4. Since NP7 has not been isolated from the insects but was recognized in a cDNA library instead, the N-terminal site of signal peptidase cleavage upon protein secretion was predicted by the program SIGNALP [Andersen, J. F., Gudderra, N. P., Francischetti, I. M. B., Valenzuela, J. G., and Ribeiro, J. M. C. (2004) Biochemistry 43, 6987-6994]. In marked contrast to wild-type NP7, NP7(Delta1-3) exhibits a very high NO affinity at pH 7.5 [KIII(eq)(NO) approximately 10(9) M-1], suggesting that the release of NO in the plasma cannot efficiently be accomplished by the truncated form. Comparison of the reduction potentials of both constructs by spectroelectrochemistry revealed an average increase of +85 mV for various distal ligands bound to the heme iron when the 1Leu-Pro-Gly3 peptide was removed. However, 1H NMR and EPR spectroscopy show that the electronic properties of the FeIII cofactor are similar in both wild-type NP7 and NP7(Delta1-3). Further, thermal denaturation that revealed a higher stability of wild-type NP7 compared to NP7(Delta1-3), in combination with a homology model based on the NP2 crystal structure (rmsd = 0.39 A), suggests that interaction of the 1Leu-Pro-Gly3 peptide with the A-B and/or G-H loops is key for proper protein function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。