Biochemical reconstitution of topological DNA binding by the cohesin ring

通过黏连蛋白环对拓扑 DNA 结合进行生化重建

阅读:8
作者:Yasuto Murayama, Frank Uhlmann

Abstract

Cohesion between sister chromatids, mediated by the chromosomal cohesin complex, is a prerequisite for faithful chromosome segregation in mitosis. Cohesin also has vital roles in DNA repair and transcriptional regulation. The ring-shaped cohesin complex is thought to encircle sister DNA strands, but its molecular mechanism of action is poorly understood and the biochemical reconstitution of cohesin activity in vitro has remained an unattained goal. Here we reconstitute cohesin loading onto DNA using purified fission yeast cohesin and its loader complex, Mis4(Scc2)-Ssl3(Scc4) (Schizosaccharomyces pombe gene names appear throughout with their more commonly known Saccharomyces cerevisiae counterparts added in superscript). Incubation of cohesin with DNA leads to spontaneous topological loading, but this remains inefficient. The loader contacts cohesin at multiple sites around the ring circumference, including the hitherto enigmatic Psc3(Scc3) subunit, and stimulates cohesin's ATPase, resulting in efficient topological loading. The in vitro reconstitution of cohesin loading onto DNA provides mechanistic insight into the initial steps of the establishment of sister chromatid cohesion and other chromosomal processes mediated by cohesin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。